State Elimination in Accelerated Multiagent Reinforcement Learning

نویسندگان

  • Ary Setijadi Prihatmanto
  • Widyawardana Adiprawita
  • Safreni Candra Sari
چکیده

This paper presents a novel algorithm of Multiagent Reinforcement Learning called State Elimination in Accelerated Multiagent Reinforcement Learning (SEA-MRL), that successfully produces faster learning without incorporating internal knowledge or human intervention such as reward shaping, transfer learning, parameter tuning, and even heuristics, into the learning system. Since the learning speed is determined among others by the size of the state space where the larger the state space the slower learning might become, reducing the state space can lead to faster convergence. SEA-MRL distinguishes insignificant states of the state space from the significant ones and then eliminating them in early learning episodes, which aggressively reduces the scale of the state space in the following learning episodes. Applying SEA-MRL in gridworld multi robot navigation shows 1.62 times faster in achieving learning convergence. This algorithm is generally applicable for other multiagent task challenges or general multiagent learning with large scale state space, and perfectly applicable with no adjustments for single agent learning situation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

The Use of Cases as Heuristics to speed up Multiagent Reinforcement Learning

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case Based Reasoning (CBR) and Multiagent Reinforcement Learning (MRL) techniques. This approach, called Case Based Heuristically Accelerated Multiagent Reinforcement Learning (CB-HAMRL), builds upon an emerging technique, Heuristic Acce...

متن کامل

Case-Based Multiagent Reinforcement Learning: Cases as Heuristics for Selection of Actions

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case-Based Reasoning (CBR) and Multiagent Reinforcement Learning (MRL) techniques. This approach, called Case-Based Heuristically Accelerated Multiagent Reinforcement Learning (CB-HAMRL), builds upon an emerging technique, Heuristic Acce...

متن کامل

Integrating System Optimum and User Equilibrium in Traffic Assignment via Evolutionary Search and Multiagent Reinforcement Learning

Traffic assignment is fundamentally a tool for transportation planning. It allocates trips within the traffic network. However, modern uses of traffic assignment also include shorter time horizons and even real-time use (e.g., for route recommendation). In the latter case, it is interesting to recommend routes that are as close as possible to the system optimum. To compute an approximation of t...

متن کامل

Effects of Shaping a Reward on Multiagent Reinforcement Learning

In reinforcement learning problems, agents take sequential actions with the goal of maximizing a time-delayed reward. In this chapter, the design of reward shaping for a continuing task in a multiagent domain is investigated. We use an interesting example, keepaway soccer (Kuhlmann, 2003; Stone, 2002; Stone, 2006), in which a team tries to maintain ball possession by avoiding the opponent’s int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016